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Received 7 August 1992, in final form 5 January 1993

Abstract. The phase diagram of two different non-equilibrium three-state systems is here
studied by means of MFRG and computer simulations; critical exponents are obtained by
a finite-size scaling analysis of the MC data. A symmetry argument used by Grinstein er
al to predict the critical behaviour of two-state non-equilibrium systems (with up-down
symmetry) is shown to apply to these three-state systems (with symmetry of interchange
between two of those states).

1. Introduction

The study of phase transitions between steady states of non-equilibrium systems
has become a topic of increasing interest extending from physics into other fields
[1, 2]. Non-equilibrium critical points have some characteristics in common with
equilibrium critical phenomena and it is therefore natural to describe the former
using the framework and the techniques developed over recent decades for the latter.
However, non-equilibrium phenomena present much greater complexity and one of
the difficulties is that its study has to be based on the dynamic rules whereas in
equilibrium systems the transition probabilities satisfy detailed balance with respect
to a Hamiltonian. Formal analytic results like the existence, in some cases, of an
effective Hamiltonian are difficult to derive [3]. For example, the establishment of
universality classes cannot be rigorously argued in terms of Gibbs measures flowing,
at criticality, towards the same fixed points; however, all the evidence from simulation
studies, series expansions, etc [4,5] is that all the non-equilibrium systems studied so
far fall into a very small number of universality classes.

The simplest examples of non-equilibrium critical systems and the first to be
studied are lattice models where a binary variable is associated with each site. In
some of these models the dynamic local rules for the evolution of the site variable
allow for the existence of an absorbing state; examples of these are the contact
process, the A model, and variations of these (which have been used to describe
processes of adsorption—desorption of particles, spreading of a liquid through a porous
medium and even propagation of epidemics); they all belong to the universality class
of directed percolation. To a different group of two-state non-equilibrium systems
belong certain Ising-like models where the non-equilibrium condition arises due to
the competition of two (or more) dynamics at different temperatures [5-8]. Results
available on these only confirm the argument of Grinstein ef af [9] according to which
the existence of up—down symmetry in two-state dynamic systems implies the same
critical behaviour of the equilibrium Ising model.
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There is considerably less work on non-equilibrium systems with more than two
states per site. Perhaps the most thoroughly investigated js again a surface reaction
process, the so-called Ziff model [10]; its phase diagram displays a second-order
phase transition to an absorbing state and the critical behaviour is one of directed
percolation, as predicted by theory when just one absorbing state is present. Among
other situations of interest where more than two states per site have to be considered
[11], one can also mention a competing two-species directed percolation mode] [12]
where the interplay between the two species results in a complicated phase diagram,
but with critical exponents still falling within the universality class of conventional
directed percolation.

In the same way that models for adsorption-desorption of particles can be
generalized to situations where two or more species are present, one must also
investigate the effects of competing dynamics in systems with two or more states per
site, thus generalizing the work previously done on non-equilibrium Ising modeis.
The question about the critical behaviour to be expected in these systems is pertinent
since the investigation of Grinstein et af is addressed to the case of two-state systems.
The phase diagram of the one-dimensional BEG model with competing dynamics is
being investigated by Mendes et a/ [13] and there seems to be evidence of a different
class of universality.

In this work we consider two different non-equilibrium three-state systems, in two
dimensions. In both there is competition between two dynamic processes that differ
in the way that they treat one among the three available states, but are symmetric in
the interchange of the other two states.

The paper is organized as follows. In section 2 we describe the dynamic rules for
both systems. In section 3 we present the phase diagrams as obtained by mean-field
renormalization group (MFRG), a method which improves on mean-field approaches
and has successfully been applied to non-equilibrium critical systems {7,8,14]. In
section 4 we present results of numerical simulations, both for the phase diagrams
and for the critical behaviour at a few chosen transition points. In section 5 we
conclude with a brief discussion of the results.

2. The models

2.1. Model 1: Ising-like model with an average number of mobile vacancies

We consider a square lattice in which the site variable S; takes the values 1, 0 and
—1. The rates for this process are

w(S; — 8) = p(5})*}[1 + S}tanhz;] + (1-p)(1 - 57

with z; = J/kpT 37, S;. This can be seen as the competition of two processes: with
probability p (process A), the state of a randomly chosen site becomes either 1 or
-1, the rates being the same as for an Ising Glauber-like process at temperature
T; and with probability 1 — p (process B), the state of that site becomes 0.
Process A obeys detailed balance with respect to the Blume-Capel Hamiltonian:
H = -J3;;y5:5 —hY;6g, in the limit that #, the field that couples to
the non-ordering parameter 1 — (S?), becomes infinite; process B does not obey
detailed balance with respect to the same Hamiltonian. So for p # 1, we have, in
principle, a non-equilibrium situation. This model describes a system of Ising spins
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with an average fraction 1 — p of vacancies; these vacancies move from site to site,
independently of the state of neighbouring sites. This is different from a site annealed
diluted Ising model where vacancies move according to rules that relate to a certain
Gibbs measure at a given temperature.

2.2. Model 2: Competing Ising and three-state Potis dynamic processes

Again a square lattice is considered and one associates a variable o, which can take
values 1, 2 or 3 with each site. This non-equilibrium model results from competition
between two sets of rules: with probability p the state of a randomly chosen site
changes according to a process (C) that obeys detailed balance with respect to the
three-state Potts Hamiltonian; and with probability 1— p (process D) the state of the
chosen site changes necessarily to either two or three, the rates for changes between
those two states being the ones for a Glauber Ising process at the same temperature.
The evolution rules for this model can then be written:

W(o; = 0}) = pWpyy + (1 - p)[éa.,l(%éo“;,z + %‘%g,s) + (1~ 60..1)W[sing]

where Wy, and Wiy, are, respectively, the rates for the Glauber-like dynamics
associated with the three- and two-state Potts Hamiltonians. Varying p can, therefore,
be seen as a way of varying the asymmetry in the space of Potts states.

3, MFRG analysis

3.1. Model 1

Following closely the approach used before [7, 8] in the study of non-equilibrium Ising
models, we start by considering a one-site cluster, and denote by P(¢) the probability
of its being in state 7, given that its neighbours have a probability ¢’ of being in state
0 and a probability (1 — @')(1 £ m’)/2 of being in state £1. According to section
2.1 the rate at which this one-site cluster changes, for example, from state 0 to state
1,is

@K'’

+4R*(14 m')? (Q’L + R(1- m')L)
e3K' + e—3K' CZK'

w(0—1) = p[R4(1 + m')*

T 2K’
2 nzf A2 X’ ' ' e’
+6R(1+m)(Q m*{-ZQR(l—m)W
+ S B(1-m')?) 4 4R(14 ) Q’s—————eK'
2 ef! fe-K'
+3QIR2(1_ f)Z_e-_lr__{;__w+_3_Q12R(lu I)
m R ek 3 m

+ R¥1- m')?v.__i + EQM +4Q"”R(1 - mf)i
2K L g-IK' 7 eX fe-K
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") 3K’
3
+6Q7R(1 - m') oo +4Q'R (1 - m'Y e e
—aK!
4 4__©
+ R (1— m’) ik +e_4K1]

=p [% + Bm’] + O(m"™)

where
_ 1"“_Q'
K’ —4K’ e3K' _ o-3K'
=4R etK' L g—4K' +12R Qr e3K | e—3K'

4 2y B — 7K TR0’ + AROB K e~ X'
+ (8R*+ 12R*Q )W-I_(l Q'+ 4RQ )m-
The other rates are easily obtained in a similar way. The time evolution of P(1)
and P(-1) is then

digl) pP(0) [3 + Bm'] + pP(~1) [} + Bm’]
- P(1) [a+ p[} - Bm']] + O(m?) )
D = pP(©) [} - Bm] +pP1) [} - Br]

- P(-1) [g+p[3 + Bm']] + O(m?).

In the vicinity of a second-order phase transition, m' is a small quantity; expanding
in m’, one obtains, from (1), the stationarity condition

P(1) - P(~1) = 2pBm’.

A similar procedure can be followed for a two-site cluster, considering that neighbours
outside the cluster have a probability @ of being in state 0 and probability
(1= Q)(1£m)/2 of being in state 1. One starts with the equations that give
the time evolution of P(ij), the probability of sites 1,2 being respectively in
states ¢, j. After some algebra, one arrives at the stationarity value for Pry =
P(11) = P(=1 - 1) + }(P(10) = P(-10)) + 1(P(01) — P(0 ~1)}:

pII =Cm + O(mz)

where C is a complicated function of p and K. The basic assumption of MFRG i§ to
consider that P; = P(1) — P(~1) and P;; must, close to the transition, scale like
m’ and m. This leads to a RG recursion relation and its fixed point equation:

2BK, = C(p, K,). @)

In figure 1, a plot is shown of the p dependence on T, as obtained from (2).
This MFRG calculation predicts the disappearance of the ferromagnetic phase for a
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concentration of vacancies 1 — p above a certain value ¢* = 0.571. This is to be
expected since a high concentration of vacancies prevents the propagation of order
among the occupied sites. This resembles the Ising model with quenched dilution
where the existence of a cluster of occupied sites that spans the whole lattice is
required for the occurrence of an ordered phase. The situation of our mode] is
different, however, since vacancies are not quenched and the fact that clusters of
occupied sites are continuously changing in time is likely to affect the propagation of
order more the higher concentration of these vacancies. One should stress again that
this model is also different from a site annealed diluted Ising system; the dynamic
rules for the present model do not lead to phase separation as occurs in the annealed
Ising model with site dilution.

Model 1

O
N
FFRG HF
Figure 1. Plot of 1/K,; = kgT./J as a function
of p, as obtained by mMFRG, for model 1. The
0 02 o 0% s Pt critical line predicted by simple mean-field theory

1-p is indicated by MF.

In figure 1, we have also represented the critical line predicted by mean-field
theory (obtained by equating P(1) — P(—1) and m’). As found before with other
systems {15], a simple MF theory is not capable of predicting the correct vanishing of
T, for a certain g* # 1.

As will be shown in section 4, the phase diagram thus obtained by MFRG is in
qualitative agreement with the results of computer simulations.

3.2. Model 2

The limit p = 0 of this model corresponds to the Ising case. Except for p = 1 ( when
all the states 1, 2 and 3 are equivalent—this is just the three-state Potts case), the
competition with process D results in unequal treatment of state 1, similar to what
happened to the state 0 (vacancy) in the previous model; one still expects symmetry
breaking between states 2 and 3 to occur below a certain critical temperature T.(p)
whereas the average number of sites in state 1 behaves as a non-ordering parameter.

The procedure for the implementatior of MFRG method is, therefore, similar to
the one sketched above, with the differences introduced by the new rates, which
indeed lead to lengthier calculations; the result for T,(p) is shown in figure 2(a).
The curve interpolates between approximate values for the critical temperature of
the Ising and three-state Potts models; we have no explanation for the apparent
plateau, it may just result from the approximation itself. In figure 2(5) we have
plotted the p dependence of the non-ordering parameter Q along the transition line:
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Figure 2. (a) Plot of kgT:/J as a function of p, as obtained by MFRG, for model 2.
(b) p-dependence of the non-ordering parameter Q along the tramsition line, as given
by MFRG, for model 2.

@ = 0 for the Ising case and Q = % for the three-state Potts system at the transition
point.

There is a quenched disordered equilibrium system whose phase diagram
resembies this one [16]. In this model, some sites are occupied by Ising spins and
others by Potts spins. The same comments we made above for the model with
vacancies would apply here, and we do not believe an effective Hamiltonian can be
found that describes this dynamic process.

4. Computer simufations

4.1. Model 1

We have simulated this model on a square lattice with L x L sites, L ranging from
L = 20 to L = 128 we used periodic boundary conditions and random initial
configurations. Starting with a given configuration, the following one was obtained
by (i) choosing a site ¢ at random, (ii) generating a random number s uniformly
distributed in [0, 1]; (iii) if s > p then site ¢ becomes vacant; otherwise: (1) generating
another random number r; (2) if r < 3(1+tanhz;) then S = 1; otherwise 5! = —1.
The first configurations were discarded as we were only interested in the stationary
regime. We performed a variable number of Monte Carlo (MC) steps (one MC step
corresponds to L? spin-flip attempts) according to the size of the lattice and to
whether we wanted to span a large temperature range or just to obtain accurate
values in a narrow region around T,(p): typical values ranged from 2 x 10* to 10°
MC in the former case, and reached 5 x 10° Mc in the latter.

The magnetization M; = (|m|), where m; = 3_; o,/ L?, is shown in figure 3
as a function of the temperature for different values of p, and L = 128. The critical
temperature is shown to decrease as p is lowered and the ordered state disappears
for p < p*. From looking at figure 3 we can guess that p* < 0.62, but one has to
consider corrections due to finite size effects; these are accounted for in the finite-
size scaling analysis presented below in this section and shown to be consistent with
p* = 0.620 = 0.002.

In figure 4 we have plotted T,(p) as obtained from simulations. To iocate the
critical point at each value of p, we have considered [17] the point of intersection
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Figure 3. Modet 1: the magnetization as a function of the temperature for different
values of p, and £ = 128. Data for p # 1 were obtained with 2 x 10% McC steps; points
for p = 1, in the vicinity of the transilion were obtained by performing 10° MC steps.

Model 1
25 +

kyT.Ad

" 8 Y 0 Ifigure 4 Te(p), for model 1, as obtained from
1-p simulations.

of the curves that represent the fourth-order cumulant vy, = 1 — {m})/3(m%)* as
a function of T, for different values of L. We have chosen to study more carefully
two points along the critical line: point P, corresponding to p = 0.7; and point R, the
transition point at T = 0. In what follows, we analyse the results of the simulations
and the estimates obtained for the exponents that describe critical behaviour around
these two points.

We start with the critical behaviour at p = 0.7. The estimate for the critical
temperature T, = 0.905 + 0.01 is obtained by three independent procedures:

(i) Figure 5(a) shows a plot of «; as a function of T for different values of L.
uy (T) scales like u, (T) = #(LY¥¢) [17,18] where ¢ is the reduced temperature,
and therefore all curves for different L must intersect at a fixed value, u*. We get
uw* = 0.605£0.06 which is consistent [19] with the value obtained in two-dimensional
systems belonging to the universality class of the Ising modei.

(i) In figure 5(b) we have represented T versus (m*)}/#, where m* are



1566 M C Marques

extrapolated values of the magnetization (using L~2 as the appropriate abscissa
variable for such an extrapolation, under pericdic boundary conditions [20]) and

= 1, the Onsager value for the critical exponent 3. The data give a reasonable
fit to a straight line, thus supporting the idea that the critical behaviour is indeed
Ising-like. The line intersects the vertical axis at a value of T consistent with the
above estimate for T,.

(iii) Finally, in figure 5(c) we have plotted T7, the value of T for which the
susceptibility x; = N{m2) — (|m])? is at a maximum, as a function of 1/L. From
the scaling relation [18] x (T} = L/ X(L'/¥¢) it follows that T}, = T, +z* / L}/";
v = 1 for the Ising model, so a straight line is expected and T, can be obtained from
the intersection with the vertical axis. The data presented in figure 5(c) again fit into
this picture and verify the estimate obtained above for the critical temperature,

0.92
0.50+
0.887%
: 0.9 1
. S 7 6
L % - 0841
—x— 20 0.8271
g 080%
—— 60
—e— 100 0784
(a) } 1 : } : t t .7 : ; : ; 1
0.88 0885 0890 0.895 0900 0905 0910 0915 6926 0 0005 001 0015 002 0025
r (m*)®
1 . '
Tt
Figure 5. (2) Model 1, p = 0.7- ur, as a function
of T, for different values of L. (b) T versus
(m*}# for model 1 and p = 0.7. (c) T} as
0.89 : " ; : a function of 1/L, for model 1 and p = 0.7. The
o 0.005  0.0% 0.015 002 0025 determination of T} required runs of 2 x 10% up
() 1t to 5 x 10° in the vicinity of the maxima of x .

To obtain an estimate of + /v and F/v we calculated, for different lattice
sizes, the magnetization and the susceptibility at 7, = 0.904. From the finite-
size scaling relation for the susceptibility and the one for the magnetization AIS]
M (T) = L~/ M(LY"¢), one gets that x,;(T,) « L?/* and M (T,) < L~F/¥,
thus enabling one to obtain /v and B/ from the slopes of the log-log plots of
xp(T.) and M (T.) versus L. These are shown in figures 6(a) and 6(b), the best fit
giving /v = 1.71+£0.05 and #/v = 0.125 2+ 0.005. In figure 6(a) we also include
another log-log plot of the maximum value of the susceptibility, x%, versus L; from
the above, x3 = L7/¥X(x*), so another estimate for v /v can be obtained in this
way. The best fit gives /v = 1.75 £ 0.05.

We refer now to the simulations for this system at T = 0. In this limit, the
rates are very simple: the randomly chosen site becomes vacant with probability 1 - p
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Figore 6. (g} Model 1, p = 0.7— log-log plot of x(7T: = 0.904) and x} = x(7T7)
as a function of L. () Model 1, p = 0.7~ log-log plot of My (T:) versus L. Ruas of
2 x 10% were used at Tt

and adopts the majority sign of the spins in its neighbourhood with probability p,
choosing either 41 or —1 with probability p/2 if the sum of the neighbours is zero.
This is somewhat similar to what happens with the isotropic majority-vote model] [19],
where a phase transition to a disordered state results from the competition with a
process where the site opposes the majority sign of its neighbours. In our case, this
is achieved by the process of emptying a site, with probability 1 — p.

We followed basically the same procedute as above, but for brevity we shali only
refer to the most relevant results,

From the intersection of the u;(p) curves we arrived at «* = 0.611 & 0.003,
p. = 0.620 & 0.002. Figures 7(z} and 7(b) are the equivalent of figures 6(a) and
6(b) for this case. One arrives at the following estimates: 8/v = 0.130 £ 0.005
and v /v = 1.74 & 0.63. In fact, all the evidence obtained from the data seems
to indicate that this critical point belongs to the universality class of the equilibrium
Ising model. We have already stressed that despite a somewhat similar phase diagram,
model 1 does not correspond to the quenched diluted Ising model. In that case, the
critical exponents at T = 0, in the percolation limit, are, in fact, different from the
ones predicted by Onsager for the Ising system. Also, p, is, for model 1, slightly
above the critical concentration for site percolation pi = 0.59 {21]; this means that
continuous mobility of the clusters of occupied sites makes the propagation of order
more difficult and may even prevent an ordered state at a narrow concentration range
where it would still persist were these clustess quenched.

Having carefully analysed the critical behaviour at two representative points (P
and R) of the phase diagram, we think that there is clear evidence of Ising-like critical
behaviour all along the critical line shown in figure 4.

4.2. Model 2

We have performed computer simulations of this model following a procedure very
similar to the one used in the study of model 1. After each MC step, the number
n,{ L) of sites in state  was recorded. For different values of p, and different system
sizes, we measured M, = (|mf) = 1/L¥{|ny(L) — ng(L)]) and Q; = 1/L¥(n,),
as well as x; and .

In figure 8(z) we have plotted T,(p) as obtained by analysis of the simulation
data for u; at different values of the parameter p. p = 0 and p = 1 correspond,
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Figure 8. (2) T:(p), for model 2, as obtained from simulations. (b) Q{p} along the
critical line, as obtained by simulations, for model 2.

respectively, to the equilibrium Ising and three-state Potts systems and for these we
have represented the exact results [22]. (In fact the symmetry breaking implied in
our definition of M, does not apply when p = 1, that is when there is no asymmetry
in the space of Potts states.) As can be seen, the critical curve interpolates smoothly
between these two critical points. In figure 8(b) we have included a plot of the values
taken by the non-ordering parameter Q along the critical line. If one compares
this with the one obtained by MFRG (figure 2(b)), one notices that Q(simulations}
considerably lower than Q™FRC); this means that the presence of state 1 is not very
significant in the vicinity of the phase transition, when symmetry breaking between
states 2 and 3 occurs. The way QUimulations) approaches § as p — 1 is here seen to be
very abrupt. We have no sensible explanation for this fact.

We have studied the critical behaviour in two points of the phase diagram: p = 0.5
and p = 0.95. Again strong evidence of Ising critical behaviour was found. Figure S
and the estimates v/v = 1.72 £ 0.03 and 8/» = 0.129 £ 0.05 illustrate this point,
The value of u* found for different values of p was again consistent with the values
it takes at the Ising critical point. We therefore conclude that the critical behaviour
displayed by model 2 is Ising-like all along the critical line and only the pointat p =1
corresponds to a different critical behaviour (three-state Potts). If it is legitimate to
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use the language of RG, one would say that the three-state Potts fixed point is unstable
to the inclusion (via dynamics) of any anisotropy in the space of Potts states.

™

i

Inm

-1 e

28 30 32 36 36 38 40 42 44 Figure 9. Model 2, p = 0.5— log-log plot of xr(T: =
Int 1.109) and M (T;) versus L.

5. Conclusion

The phase diagram of two different non-equilibrium three-state systems, in two
dimensions, is here studied by means of an analytical method (MFRG) and computer
simulations; there is qualitative agreement between the results of both approaches, A
finite-size scaling analysis of the MC data led to estimates for the critical exponents,
all consistent with the values for the equilibrium Ising model, thus confirming the
symmetry analysis of Grinstein et ! [9]. As a matter of fact their study concentrates on
two-state dynamic systems but the argument that the presence of np-down symmetry
leads to Ising critical behaviour is actually expressed in terms of a continuum Langevin
equation; a coarse-grained version of the Langevin equation for the present three-
state models (both having the up-down symmetty of the Ising model) should therefore
be of the same form (at large enough distances) and thus lead to the same universality
class,

Further investigation of other three-state (or arbitrary number of states) non-
equilibrium systems with or without this symmetry is still needed for a complete test
of the above argument.
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