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Abstract. The phase diagram of two different non-equilibrium three-stale systems is here 
studied by means of MFRG and computer simulations; critical exponents are obtained by 
a finite-size scaling analysis of lhe MC data. A symmetry argument used by Grinstein et 
al to predict the critical behaviour of two-state non-equilibrium systems (with updown 
symmetry) is shown to apply to these three-slate systems (with symmetry of interchange 
between two of those slates). 

1. Introduction 

The study of phase transitions between steady states of non-equilibrium systems 
has become a topic of increasing interest extending from physics into other fields 
[l, 21. Non-equilibrium critical points have some characteristics in common with 
equilibrium critical phenomena and it is therefore natural to describe the former 
using the framework and the techniques developed over recent decades for the latter. 
However, non-equilibrium phenomena present much greater complexity and one of 
the difficulties is that its study has to be based on the dynamic rules whereas in 
equilibrium systems the transition probabilities satisfy detailed balance with respect 
to a Hamiltonian. Formal analytic results like the existence, in some cases, of an 
effective Hamiltonian are difficult to derive [3]. For example, the establishment of 
universality classes cannot be rigorously argued in terms of Gibbs measures Bowing, 
at criticality, towards the same lixed points; however, all the evidence from simulation 
studies, series expansions, etc [4,5] is that all the nonequilibrium systems studied so 
far fall into a very small number of universality classes. 

The simplest examples of non-equilibrium critical systems and the first to be 
studied are lattice models where a binary variable is associated with each site. In 
some of these models the dynamic local rules for the evolution of the site variable 
allow for the existence of an absorbing state; examples of these are the contact 
process, the A model, and variations of these (which have been used to describe 
processes of adsorptiondesorption of particles, spreading of a liquid through a porous 
medium and even propagation of epidemics); they all belong to the universality class 
of directed percolation. Tb a different group of two-state non-equilibrium systems 
belong certain Ising-like models where the non-equilibrium condition arises due to 
the competition of two (or more) dynamics at different temperatures (5-81. Results 
available on these only confirm the argument of Grinstein er a1 [9] according to which 
the existence of up-down symmeny in two-state dynamic systems implies the same 
critical behaviour of the equilibrium king model. 
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There is considerably less work on non-equilibrium systems with more than two 
states per site. Perhaps the most thoroughly investigated is again a surface reaction 
process, the so-called Ziff model [IO]; its phase diagram displays a second-order 
phase transition to an absorbing state and the critical behaviour is one of directed 
percolation, as predicted by theory when just one absorbing state is present. Among 
other situations of interest where more than two states per site have to be considered 
[ll], one can also mention a competing two-species directed percolation model [I21 
where the interplay between the two species results in a complicate0 phase diagram, 
but with critical exponents still falling within the universality class of conventional 
directed percolation. 

In the same way that models for adsorption-desorption of particles can be 
generalized to situations where two or more species are present, one must also 
investigate the effects of competing dynamics in systems with two or more states per 
site, thus generalizing the work previously done on non-equilibrium Ising models. 
The question about the critical behaviour to be expected in these systems is pertinent 
since the investigation of Grinstein er a1 is addressed to the case of two-state systems. 
The phase diagram of the one-dimensional BEG model with competing dynamics is 
being investigated by Mendes et a1 [13] and there seems to be evidence of a different 
class of universality. 

In this work we consider two different non-equilibrium threestate systems, in two 
dimensions. In both there is competition between two dynamic processes that differ 
in the way that they treat one among the three available states, but are symmetric in 
the interchange of the other two states. 

The paper is organized as follows. In section 2 we describe the dynamic rules for 
both systems. In section 3 we present the phase diagrams as obtained by mean-field 
renormalition group (MFRG), a method which improves on mean-field approaches 
and has successfully been applied to non-equilibrium critical systems [7,8,14]. In 
section 4 we present results of numerical simulations, both for the phase diagrams 
and for the critical behaviour at a few chosen transition points. In section 5 we 
conclude with a brief discussion of the results. 

2. The models 

2.1. Model I :  Ising-like model with an average number of mobile vacancies 

We consider a square lattice in which the site variable Si takes the values 1, 0 and 
-1. The rates for this process are 

w(Si -+ Si) = p(Si)zi[l t Si tanhs;] + (1 - p ) ( l -  Si’) 

with zi = J /k ,T  cj Sj. This can be seen as the competition of two processes: with 
probability p (process A), the state of a randomly chosen site becomes either 1 or 
-1, the rates being the same as for an king Glauber-like process at temperature 
T; and with probability 1 - p (process B), the state of that site becomes 0. 
Process A obeys detailed balance with respect to the Blume-Cape1 Hamiltonian: 
7-l = -Jc(i,j) S;Sj - hCi 6,%, in the limit that h, the field that couples to 
the non-ordering parameter 1 - (St), becomes infinite; process B does not obey 
detailed balance with respect to the same Hamiltonian. So for p # 1, we have, in 
principle, a nonequilibrium situation. This model describes a system of king spins 

I ?  
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with an average fraction 1 - p of vacancies; these vacancies move from site to site, 
independently of the state of neighbouring sites. Thii is different from a site annealed 
diluted Ising model where vacancies move according to rules that relate to a wrtain 
Gibbs measure at a given temperature. 

2.2 Model 2 Competing Ising and three-state Potls dynamic processes 

Again a square lattice is considered and one associates a variable ui which can take 
values 1, 2 or 3 with each site. This non-equilibrium model results from competition 
between two sets of rules: with probability p the state of a randomly chosen site 
changes according to a process (C) that obeys detailed balance with respect to the 
threestate Potts Hamiltonian; and with probability 1 - p (process D) the state of the 
chosen site changes necessarily to either two or three, the rates for changes between 
those two states being the ones for a Glauber king process at the same temperature. 
The evolution rules for this model can then be written: 

where Wpd, and Wkos are, respectively, the rates for the Glauber-like dynamics 
associated with the three- and two-state Potts Hamiltonians. Varying p can, therefore, 
be seen as a way of varying the asymmetry in the space of Potts states. 

3. MFRG analysis 

3.1. Model I 

Following closely the approach used before [7,8] in the study of nonequilibrium king 
models, we start by considering a one-site cluster, and denote by P( i) the probability 
of its being in state i, given that its neighbours have a probability Q' of being in state 
0 and a probability (I  - Q')(l f m')/2 of being in state fl. According to section 
2.1 the rate at which this one-site cluster changes, for example, from state 0 to state 
1, is 

e3K' + 4R3( 1 + mf)3 ( Q' 
e3K' + e-3K' R(l - e-2K, 

eK' e2K' 
f 6RZ( 1 + m')2 e2K' + e-2K' t 2Q'R(1 - m')eK, e-K, 

1 eK' 
f zR2(1 - m')') -I- 4R( 1 + m') ( Qf3 eK' + e-K' 
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1 e-4K' 

t ~ 4 ( 1 -  4 e4K' t e -4K '  

= p  - + B m '  +0(mf2) [: I 
where 

e4K' - e-4K' e3K' - e-3K' 

B = 4R4 e4K' + e-4K' t 1 2 ~ 3 ~ '  e3K' + e-3K' 

2 I2 e2K' - e-2K' eK' - e-K' 
f (8R4 t 12R Q IeZK, e-2Kc t (12R3Q' t 4RQ'3)eK, + e-K,. 

The other rates are easily obtained in a similar way. The time evolution of P ( l )  
and P(-1) is then 

dP0 = pP(0) [i t Em'] t p P ( - l )  Em'] 
dl  

- P ( l )  [ q  t P [; - B"1l f 0("2) 

- P ( - l ) [ q t p [ $  t Bn']] 
dP(-1) = pP(0) [; - Bn'] t PP(1) [f - Em'] 

dt  

In the vicinity of a second-order phase transition, m' is a small quantity; expanding 
in m', one obtains, from (l), the stationarity condition 

P(1) - P(-1) = 2pBm'. 

A similar procedure can be followed for a two-site cluster, considering that neighbours 
outside the cluster have a probability Q of being in state 0 and probability 
( 1  - Q ) ( l i  m)/2 of being in state f l .  One starts with the equations that give 
the time evolution of P ( i j ) ,  the probability of sites 1,2 being respectively in 
states i , j .  After some algebra, one arrives at the stationarity value for Pzz = 
P(11) - P(-1- 1) t i(P(10) - P(-10)) t i(P(O1) - P(0 - 1)): 

Pzz = Cm t O( m2) 

where C is a complicated function of p and I ( .  The basic assumption of MFRG is to 
consider that Pz = P ( l )  - P(-1) and Pzz must, close to the transition, scale like 
m' and m. This leads to a RG recursion relation and its tixed point equation: 

ZpBIC, = C(p, Kc). (2) 

In figure 1, a plot is shown of the p dependence on Tc, as obtained from (2). 
This MTRG calculation predicts the disappearance of the ferromagnetic phase for a 
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concentration of vacancies 1 - p above a certain value q* = 0.571. This is to be 
expected since a high concentration of vacancies prevents the propagation of order 
among the occupied sites. This resembles the king model with quenched dilution 
where the existence of a cluster of occupied sites that spans the whole lattice is 
required for the occurrence of an ordered phase. The situation of our model is 
different, however, since vacancies are not quenched and the fact that clusters of 
occupied sites are continuously changing in time is likely to affect the propagation of 
order more the higher concentration of these vacancies. One should stress again that 
this model is also different from a site annealed diluted king system; the dynamic 
rules for the present model do not lead to phase separation as occurs in the annealed 
Ising model with site dilution. 

M o d e l l  

Fium 1. Plot of 1/K. = ksT,/J as a funclion 
of p. as obtained by MFRG, for model 1. The 

O L  O h  1 critical line predicted by simple mean-field theory 
is indicated by MP. 

02 
1 ,, , , ) ;  
0 

3-P 

In figure 1, we have also represented the critical line predicted by mean-field 
theory (obtained by equating P(l) - P(-1) and m'). As found before with other 
systems [U], a simple MF theory is not capable of predicting the correct vanishing of 
T, for a certain q* # 1. 

As will be shown in section 4, the phase diagram thus obtained by MFRG is in 
qualitative agreement with the results of computer simulations. 

3.2. Model 2 

The limit p = 0 of this model corresponds to the Ising case. Except for p = 1 ( when 
all the states 1, 2 and 3 are equivalent-this is just the three-state Potts case), the 
competition with process D results in unequal treatment of state 1, similar to what 
happened to the state 0 (vacancy) in the previous model; one still expects symmetry 
breaking between states 2 and 3 to occur below a certain critical temperature T,(p) 
whereas the average number of sites in state 1 behaves as a non-ordering parameter. 

The procedure for the implementation of MFRG method is, therefore, similar to 
the one sketched above, with the differences introduced by the new rates, which 
indeed lead to lengthier calculations; the result for T,(p) is shown in figure 2(a). 
The curve interpolates between approximate values for the critical temperature of 
the Ising and three-state Potts models; we have no explanation for the apparent 
plateau, it may just result from the approximation itself. In figure 2(b) we have 
plotted the p dependence of the non-ordering parameter Q along the transition lie: 
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Plgure 2. (a) Plot of kBT,/ J as a function of p, as obtained by MFRG, for model 2. 
(6) p-dependence of the non-ordering parameter Q along the transition line, as given 
by MFRG, for model 2. 

Q = 0 for the Ising case and Q = f for the three-state Potts system at the transition 

There is a quenched disordered equilibrium system whose phase diagram 
resembles this one [ 161. In this model, some sites are occupied by king spins and 
others by Potts spins. The same comments we made above for the model with 
vacancies would apply here, and we do not believe an effective Hamiltonian can be 
found thaf describes this dynamic process. 

point. 

4. Computer simulations 

4.1. Model 1 
We have simulated this model on a square lattice with L x L sites, L ranging from 
L = 20 to L = 128; we used periodic boundary conditions and random initial 
configurations. Starting with a given configuration, the following one was obtained 
by (i) choosing a site i at random; (ii) generating a random number s uniformly 
distributed in [0,1]; (iii) ifs > p then site i becomesvacant; otherwise: (1) generating 
another random number r; (2) if r < :(l+tanhz,) then St = 1; otherwise Si = -1. 
The first configurations were discarded as we were only interested in the stationary 
regime. We performed a variable number of Monte Carlo (MC) steps (one MC step 
corresponds to L2 spin-flip attempts) according to the size of the lattice and to 
whether we wanted to span a large temperature range or just to obtain accurate 
values in a narrow region around TJp):  typical values ranged from 2 x lo4 to 16 
MC in the former case, and reached 5 x lo6 MC in the latter. 

The magnetization M ,  = (ImLl), where mL. = xi  ui /L2 ,  is shown in figure 3 
as a function of the temperature for different values of p, and L = 128. The critical 
temperature is shown to decrease as p is lowered and the ordered state disappears 
for p < p'. From looking at figure 3 we can guess that p* < 0.62, but one has to 
consider corrections due to finite size effects; these are accounted for in the finite- 
size scaling analysis presented below in this section and shown to be consistent with 
p' = 0.620 i 0.002. 

In figure 4 we have plotted TJp)  as obtained from simulations. Tb locate the 
critical point at each value of p, we have considered [17] the point of intersection 
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of the curves that represent the fourth-order cumulant uL = 1 - (mi)/3(m:)* as 
a function of T ,  for different values of L. We have chosen to study more carefully 
two points along the critical line: point P, corresponding to p = 0.7; and point R, the 
transition point at T = 0. In what follows, we analyse the results of the simulations 
and the estimates obtained for the exponens that describe critical behaviour around 
these two points. 

We start with the critical behaviour at p = 0.7. The estimate for the critical 
temperature T, = 0.905 f 0.01 is obtained by three independent procedures: 

(i) Figure 5(a) shows a plot of uL as a function of T for different values of L. 
uL(T) scales like ~~(7') = G ( L 1 / v e )  [17,18] where z is the reduced temperature, 
and therefore all curves for different L must intersect at a fixed value, U*. We get 
U* = 0.605&0.06 which is consistent [19] with the value obtained in two-dimensional 
systems belonging to the universality class of the king model. 

(ii) In figure 5(b) we have represented T versus where m' are 
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extrapolated values of the magnetization (using L-2  as the appropriate abscissa 
variable for such an extrapolation, under periodic boundary conditions [20]) and 
p = k, the Onsager value for the critical exponent p. The data give a reasonable 
fit to a straight line, thus supporting the idea that the critical behaviour is indeed 
Ising-like. The line intersects the vertical axis at a value of T consistent with the 
above estimate for T,. 

(i) Finally, in figure 5(c) we have plotted T;, the value of T for which the 
susceptibility x L  = N ( m i )  - (lmL])2 is at a maximum, as a function of 1 / L .  From 
the scaling relation [18] xL(T)  = LY/y*(L'/ye)  it follows that T i  = T,+x"/L'~";  
U = 1 for the king model, so a straight line is expected and T, can be obtained from 
the intersection with the vertical axis. The data presented in figure 5(c) again fit into 
this picture and verify the estimate obtained above for the critical temperature. 

r - 7  0 9 2 1 '  t 

F l p m  5. (a) Model 1, p = 0.7- UL as a funclion 
of T, for differenl values of L. (b)  T versus 
(m')'l@ for model 1 and p = 0.7. (c) Ti as 
a function of I /L, for model 1 and p = 0.7. The 
determination of Ti, y u i r e d  mns of 2 x lo6 up 
to 5 x lo6 in the vicinity of the maxima of XL. 

TO obtain an estimate of y / u  and @/U we calculated, for different lattice 
sizes, the magnetization and the susceptibility at T, = 0.904. From the finite- 
size scaling relation for the susceptibility and the one for the magnetization 181 

thus enabling one to obtain -(/U and p / u  from the slopes of the log-log plots of 
x,(T,) and M,(T,) versus L. These are shown in figures 6(a) and 6(b), the best fit 
giving ?/U = 1.71rt0.05 and @/U = 0.125i0.005. In figure 6(a) we also include 
another log-log plot of the maximum value of the susceptibility, xi, versus L; from 
the above, = L ' / " x ( x ' ) ,  so another estimate for ?/U can be obtained in this 
way. The best fit gives y / u  = 1.753~ 0.05. 

We refer now to the simulations for this system at T = 0. In this limit, the 
rates are very simple: the randomly chosen site becomes vacant with probability 1 - p 

M,(T)  = L - ~ / " f i ( L ' / y e ) ,  one gets that xL(Tc)  o( L T l y  and M,(T,) K L- J l v ,  
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Figore 6. (0) Model 1, p = 0.7- log-log plol of XL(T, = 0.904) and x i  = x(T;) 
as a function of L. (b) Model 1, p = 0.7- log-log plol of M&(Tc) versus L. Rum of 
2 x lo6 were used at T,. 

and adopts the majority sign of the spins in its neighbourhood with probability p, 
choosing either + 1  or -1 with probability p / 2  if the sum of the neighbours is zero. 
This is somewhat similar to what happens with the isotropic majority-vote model 1191, 
where a phase transition to a disordered state results from the competition with a 
process where the site opposes the majority sign of its neighbours. In our case, this 
is achieved by the process of emptying a site, with probability 1 - p .  

We followed basically the same procedure as above, but for brevity we shall only 
refer to the most relevant results. 

From the intersection of the u L ( p )  curves we arrived at U' = 0.611 f 0.003, 
p ,  = 0.620 i 0.002. Figures 7(a)  and 7(6) are the equivalent of figures 6(a) and 
6(b) for this case. One amves at the following estimates: p / v  = 0.130 f 0.005 
and r / v  = 1.74 i 0.03. In fact, all the evidence obtained from the data seems 
to indicate that this critical point belongs to the universality class of the equilibrium 
Ising model. We have already stressed that despite a somewhat similar phase diagram, 
model 1 does not correspond to the quenched diluted Ising model. In that case, the 
critical exponents at T = 0, in the percolation limit, are, in fact, different from the 
ones predicted by Onsager for the king system. Also, p ,  is, for model 1, slightly 
above the critical concentration for site percolation pzp = 0.59 [21]; this means that 
continuous mobility of the clusters of occupied sites makes the propagation of order 
more difficult and may even prevent an ordered state at a narrow concentration range 
where it would still persist were these clusters quenched. 

Having carefully analysed the critical behaviour at two representative points (P 
and R) of the phase diagram, we think that there is clear evidence of Ising-like critical 
behaviour all along the critical line shown in figure 4. 

4.2. Model 2 

We have performed computer simulations of this model following a procedure very 
similar to the one used in the study of model 1. After each MC step, the number 
n i ( L )  of sites in state i was recorded. For different values of p, and different system 
sizes, we measured M ,  = (ImLl) = 1/L2(ln2(L) - ns(L)I) and QL = l/Lz(nl), 
as well as xL and uL. 

In figure S(a) we have plotted T,(p) as obtained by analysis of the simulation 
data for U, at ditferent values of the parameter p. p = 0 and p = 1 correspond, 
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Figure 7. (0 )  Model 1, T = 0- Lng-log plot of x ~ ( p .  = 0.620) as a function of L. 
(b) Model 1, T = 0- Lag-log plot of M L ( P ~ )  versus L.  

Figure 8. (U )  !?&), for model 2, as obtained from simulations. (b) Q ( p )  along the 
critical line, as obtained by simulations, for model 2. 

respectively, to the equilibrium king and threestate Potts systems and for these we 
have represented the exact results 1221. (In fact the symmetry breaking implied in 
our definition of M ,  does not apply when p = 1, that is when there is no asymmetry 
in the space of Potts states.) ks can be seen, the critical curve interpolates smoothly 
between these two critical points. In figure 8(b) we have included a plot of the values 
taken by the non-ordering parameter Q along the critical line. If one compares 
this with the one obtained by MFRG (figure 2(b)), one notices that Q(rimulrtionr) is 
considerably lower than Q(MmG); this means that the presence of state 1 is not very 
significant in the vicinity of the phase transition, when symmetry breaking between 
states 2 and 3 occurs. The way Q(nimulations) approaches 4 as p + 1 is here seen to be 
very abrupt. We have no sensible explanation for this fact. 

We have studied the critical behaviour in two points of the phase diagram: p = 0.5 
and p = 0.95. Again strong evidence of Ising critical behaviour was found. Figure 9 
and the estimates r/v = 1.72 i 0.03 and @/U = 0.129 i 0.05 illustrate this point. 
The value of U' found for different values of p was again consistent with the values 
it takes at the Ising critical point. We therefore conclude that the critical behaviour 
displayed by model 2 is Ising-like all along the critical line and only the point at p = 1 
corresponds to a different critical behaviour (three-state Potts). If it is legitimate to 
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use the language of RG, one would say that the three-state Potts fixed point is unstable 
to the inclusion (via dynamics) of any anisotropy in the space of Pots states 

5 
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2 8  3 0  3 2  3 4  3.6 3,E 4 ~ 0  L 2  4 4  
1" 1 

FLgum 9. Model 2, p = 0.5- 
1.109) and M=(T,) versus L. 

log-log plot of 

5. Conclusion 

The phase diagram of two different non-equilibrium three-state systems, in two 
dimensions, is here studied by means of an analytical method (MFRG) and computer 
simulations; there is qualitative agreement between the results of both approaches. A 
finite-size scaling analysis of the MC data led to estimates for the critical exponents, 
all consistent with the values for the equilibrium Ising model, thus confirming the 
symmetry analysis of Grinstein et a1 191. As a matter of fact their study concentrates on 
two-state dynamic systems but the argument that the presence of up-down symmetry 
leads to Ising critical behaviour is actually expressed in terms of a continuum Langevin 
equation; a coarse-grained version of the Langevin equation for the present three- 
state models (both having the up-down symmetry of the king model) should therefore 
be of the same form (at large enough distances) and thus lead to the same universality 
class. 

Further investigation of other three-state (or arbitrary number of states) non- 
equilibrium systems with or without this symmetry is still needed for a complete test 
of the above argument. 
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